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Abstract, The present paper arises from the examination of how the triangularity condi- 
tions on the Gelfand-Levitan kernel affect the nature of the potentials. The original 
triangularisation property for the one-dimensional problem led to local potentials. The 
triangularity conditions used in the present paper (which is the one-dimensional analogue 
of the three-dimensional conditions used in a previous paper) lead to simple non-local 
potentials, which because of their form we call parity-dependent potentials. The inverse 
spectral theory problem is solved explicitly for several types of spectral measure functions. 
Such solutions give parity-dependent potentials with complete sets of eigenfunctions in 
terms of elementary functions. Using these examples, it is shown that a rich spectral 
theory exists with some aspects strikingly different from those of the spectral theory for 
local potentials, 

1. Introduction. Parity-dependent potentials 

The object of the present paper is to introduce a very simple class of non-local 
potentials for the one-dimensional Schrodinger equation (-cc < x < 00). These non- 
local potentials depend on the parity operator as well as the x coordinate and are 
simpler than the sometimes-used momentum-dependent potentials. Explicit examples 
of the non-local potentials are given for which the Schrodinger equation can be solved 
for exactly, and for which complete sets of eigenfunctions can be found. Hamiltonians 
with these non-local potentials have unusual spectral properties compared with those 
arising from those having local potentials, and therefore the new potentials enrich 
our ideas about the possibilities for the spectrum of more general operators. Examples 
of the new properties are that point eigenval-ies can be embedded in the continuum 
and that a point eigenvalue can have the multiplicity 2. Also non-local potentials can 
be given which do not scatter at all for any energy of incoming wave. 

We came across this new class of potentials as a consequence of studying the 
inverse spectral theory for the one-dimensional Schrodinger equation. In fact, the 
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specific examples of non-local potentials given in the present paper were obtained 
using inverse spectral theory. There is a large literature for inverse spectral theory 
(see e.g. Kay and Moses 1955, 1956a, b, Gelfand and Levitan 1951, Abraham and 
Moses 1980). For the proper understanding of how the non-local potentials make 
their appearance as motivated in the present paper, there should be some familiarity 
with the inverse spectral theory background referred to above. However, the proper- 
ties of the examples given in the present paper can be verified independently of the 
inverse theory. Nevertheless, the way the new non-local potentials came to our 
attention was through inverse spectral theory and we must refer to it, even though 
perfunctorily. We proceed to summarise some aspects of the direct and inverse spectral 
problems 

In the direct spectral problem for Hermitian operators, one considers a Hamiltonian 
as given and seeks a complete set of eigenfunctions, of both the discrete and continuous 
spectrum, The completeness of the set is stated in terms of the spectral measure 
function, which tells one what the nature of the spectrum is; also its functional form, 
for given boundary conditions on the eigenfunctions, is dependent upon the potential. 
In some cases which we shall refer to shortly, the boundary conditions can be picked 
so that the spectral measure function is essentially a portion of the scattering operator 
and the normalisations of the eigenfunctions for the point eigenvalues. 

To summarise, the direct spectral problem is the following: given the potential, 
and boundary conditions on the eigenfunctions, find the spectral measure function 
(which gives the resolution of the identity or, equivalently, the completeness relation 
for the eigenfunctions). 

The inverse spectral problem interchanges some of the information which is given 
in the direct spectral problem with that which is to be found. The version which this 
paper deals with is the following: given boundary conditions on the eigenfunctions 
and the spectral measure function compatible with the boundary conditions, find the 
potential. 

The direct and inverse problems are discussed in a very general manner in Kay 
and Moses (1955, 1956a, b) and the one-dimensional Schrodinger equation is treated 
in great detail. The method used to set up and solve the inverse problem for the 
one-dimensional case is a generalisation of that of Gelfand and Levitan (1951) for 
the radial equation. One uses the Gelfand-Levitan equation, which is a linear integral 
equation for a kernel (the Gelfand-Levitan kernel) which may be considered the 
kernel of a linear operator. The input of the linear integral equation is the spectral 
measure function. The kernel allows one to compute the potential. 

In Kay and Moses (1955, 1956a, b) it is shown that to solve the general Gelfand- 
Levitan equation a triangularity condition must be imposed upon the kernel which 
then becomes a Volterra kernel. A way is given for choosing the triangularity condition 
which implies boundary conditions on the eigenfunctions which is one of the given 
pieces of information in the inverse spectral problem. In the one-dimensional case 
this corresponds to choosing the eigenfunctions to be the well known Jost wavefunc- 
tions. This choice of triangularity also enables one to obtain the potential, which is 
a local one. Many explicit examples of the use of the one-dimensional inverse spectral 
theory are given in Kay and Moses (1955, 1956a, b), Gelfand and Levitan (1951), 
Abraham and Moses (19801, for example. The choice of boundary conditions for the 
one-dimensional problem has the fortuitous property that the spectral measure func- 
tion is very simply related to the reflection coefficient of one-dimensional scattering. 
Therefore one can speak of the inverse scattering problem in one dimension. 



Potentials for I D  Schriidinger equation from inverse spectral theory 305 

In this paper we study the effect of the choice of a different triangularisation 
condition for the Gelfand-Levitan kernel on the boundary conditions of the eigenfunc- 
tions and on the nature of the potential in one dimension. We shall see that we are 
led to a class of simple non-local potentials. Moreover, we can give explicit examples 
of the construction of these potentials from given spectral measures using inverse 
methods. The potentials will be the parity-dependent potentials of this paper. 

It should be mentioned that our researches on the consequences of the triangularity 
condition of the Gelfand-Levitan kernel actually began for the three-dimensional 
Schrodinger equation, where it was shown that explicit non-local potentials can be 
found for which the Hamiltonian has complete sets of eigenfunctions (Moses 1979), 
and that the present paper represents an adaptation of the one-dimensional problem, 
for which the mathematics is simpler. (In Kay and Moses (1961a, b), Faddeev (1976) 
and Newton (1974) other triangularity conditions are used for the three-dimensional 
problem, which could lead to local potentials, but no concrete examples are given.) 
It should also be mentioned that in Newton (1980) a very similar triangularisation 
condition to ours is given for the one-dimensional problem, but the author confines 
his interest to local potentials and thus non-local potentials of the present paper are 
not found. 

We define an operator V to be a parity-dependent potential II it acts on an element 
9 ( x )  of the Hilbert space in the following way: 

VU'(X) = Vl(X)*(X)+ V2(x)*(-x).  (1) 

The operator V is thus given when the functions V l ( x ) ,  V z ( x )  are given. Equation 
(1) can also be written 

( l a )  V*(X) = Vl(X)V(X) + V,(x)P*(x) ,  

where P is the parity, defined as usual by 

P*(x)=*(-x)*  (16) 

Because of equation (1) the Schrodinger equation gives a dependence on the past and 
future as well as the present. 

If the parity-dependent potential V is Hermitian, V l ( x )  is a real function of x ,  
and V ; ( - x )  = V 2 ( x ) .  The asterisk means complex conjugate. The Hermiticity of the 
parity-dependent potential V is readily shown. Let @(XI and * ( x )  be two state vectors. 
Then 

(@, V Y )  = 

-X -0c 

@*(x)  VU'(x) dx = @*(x)[  Vl(xi*(x 1 + Vl(x)*( -x) ]  dx 
--x i, 
I, i, +X -m 

= T ( X ) ~ ~ ( X ) @ * ( X )  dx + Y(x)V~(-x)CP*(-xi  dx 

+X 

'4'(X)Vi(X)@*(X) dx + U'(X)VT(X)@*( -X)  dx 

= [(Y, V@)]*. 

In a certain heuristic sense, the operator V is the most general 'function' of P and 
x which one can have. Consider 

v = V ( x ,  P )  (2) 
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and formally expand this operator in a power series in P. Since P does not commute 
with x ,  a typical term would have powers of P distributed among functions of x ,  i.e. 
any of the n th-order terms would have the form 

P ‘ V I P f V * .  . , V,P’  

where the sum of exponents on the parity operator P is n ,  and V,  are functions of x. 
= I  if j is even and P’ = P if j is odd. Moreover, P v k ( x )  = vk(-x)P.  

It then follows that any of the n t h  terms of the expansion can always be written 
either as V e ( x )  if n is even or as V , ( x ) P  i f  n is odd (the subscripts ‘e’ and ‘0‘ refer to 
even or odd). Summing all terms of the expansion leads to 

However, 

2. The Gelfand-Levitan equation. The potential in terms of the kernel 

The techniques of Kay and Moses (1355, 1956a, b) can be applied immediately, once 
one has specified the triangularity of the Gelfand-Levitan kernel. For the sake of 
terseness we shall not repeat the arguments, but use the results of Kay and Moses 
(1955, 1956a, b) with slight changes in notation. 

As usual we take (--CO < x < CO) and define Ho by 

Ho = -d2/dx ’. (3) 

The operator A .  has the eigenvalues i l  which correspond to the directions of the 
momentum as in Kay and Moses (1955, 1956a, b); IHo, A,,; E, a )  is a simultaneous 
eigenstate of Ho,  A .  with eigenvalues E, a respectively. The eigenfunctions 
( x  IHo, Ao;  E, a )  are given by 

(xIHo, Ao;  E, a )  = (2.rr’/2E1/4)-1 exp(iaE’”x) ( O < e < a , a  =*l), (4) 

They satisfy the orthogonality and completeness relations (2.3) and (2.4) of Kay and 
Moses (1956 b). 

As in Kay and Moses (1955, 1956a, b) we introduce the continuous spectrum part 
of the weight operator (alw,(E)la’) which is a function of E, a, a’ and satisfies the 
Hermiticity condition 

(a  Iw,(E)Ia’) = [(a’lw,(E)la)l”. ( 5 )  

In the case of the local potentials of Kay and Moses (l955,1956a, b) the continuous 
part of the weight operator is related to the scattering operator. In the present case, 
because of the triangularity condition which we wish to impose on ( ~ ( K l x ’ ) ,  where 
( x  lKlx’) is the Gelfand-Levitan kernel, this relation is quite complicated and we take 
the weight operator as arbitrary, except that we require it to be a positive-definite 
matrix in the variables a, a’ for every E. 

Thus the continuous part of the weight operator W, is given by 
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Equation (6) takes on a pleasanter form if we define (keeping the Hermiticity of 
(alw,(E)/a’)  in mind) 

c (k 1 = (1 bC(& 11) - 1, 
( 7 )  

b(k) = (-llwc(e)l+l), b * ( k )  = (+llwc(E)l-l) (k = c(k) ,  d (k )  real). 

The quantities c ( k ) ,  d(k) ,  b(k) have been defined for k>O. It is also useful to 
introduce k < 0, by defining 

d (k )  =( - l lwc(E) l - l ) -  1, 

c(-k) = d ( k ) ,  c ( k )  real, all k, 

b ( - k )  = b*(k). 

Then 

(X I WcIx’) = S (X - x’) +F(x  + x’)  + G (X - x‘), 
+a 

G(x) = (257-l 

F ( x )  = ( 2 ~ ) - ’  1 
c(k)  eikx dk, 

b(k) e-ikx dk. 

I-, 
+a 

-W 

The discrete portion of the weight operator is given by 

where S o i ( x )  are the formal eigenfunctions of Ho which satisfy 

HO*Oi (X ) = Ei * o j  ( x  ). (10) 

The eigenvalues Ei are prescribed and are to be the eigenvalues of H. They can take 
on any real value. The fact that for our new triangularity condition equation (10) 
admits two linearly independent solutions for a given Ei leads to the possibility of 
having a multiplicity of 2 for Ei, if one chooses. The positive constants Ci will be the 
normalisations of the corresponding eigenfunctions of H. 

We now come to the triangularity condition which we shall impose: 

(x IK Ix ’) = ( x  IKolx ‘) = 0 for Ix’I > 1x1. (11) 

The Gelfand-Levitan equation is then 

(X IK IX ’) = -F (X f X ’) - G (X - X ’) - (X 1 WdIX ’) 

(x IKIx“)F(x”+x‘)  dx“ 

(X IK /X ”)G (X ” - x ’) dx ” 

< x ~ K / x ” ) ( x ” ~  Wdlx’) dx” (Ix’l Ix 1 ) .  

The triangularity condition (11) determines the form of the potential. 
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In the appendix it is proved that 

d 
dx (x 1 v~x’)  = 46(x )6 (X’)(OIKIO) + sgn x 6 (x - x’)2 - (x lK I X )  

d 
dx 

+ sgn x ~ ( x  + x’)2 - (x IK I - x), 

so that, writing an arbitrary state (xi$)= $(x), we have that V$(x) is given by (1) with 

V2(x)=2sgnx-(xjKI-x).  d (14) 
dx 

Denoting the continuous spectrum eigenfunctions of H by qk(x )  (we are using a 
notation close to that of Kay and Moses (1956b)) where 

XI 

q k  (x) = elkx + I-,,, (xlKIx’)elkx’ dx’, 

The eigenfunctions corresponding to the point eigenvalue E, are given by 
lx I 

- - X I  

Y, (x) = (x 1 + 1 (x IK I x ’ ) q ~ ,  (x’) dx’ 

and satisfy 

HPI r , (x )  = E 1 Q j ( X ) *  

The eigenfunctions satisfy the completeness relation 
+m 

p k ( X ) [ l  +C(k)]pt(X’) dk -I- I \Ilk(X)b(-k)\II*k(X’) dX’ 
--a3 

3. Local potentials 

An important question in the use of the algorithm is the question of whether one can 
obtain a Gelfand-Levitan kernel (x JK Ix ’) with the appropriate triangularity condition 
for all parity-dependent potentials. One way to prove this statement-if indeed it is 
true-is to find an appropriate Green function and obtain an integral equation for 
the kernel (without initially assuming the triangularity property) and obtain an integral 
equation for the kernel in terms of the potential and the Green function. The integral 
equation would then give the triangularity condition on the kernel and show one how 
the potential is to be obtained from the kernel. This program is carried out for the 
usual triangularity condition (x1Klx’) = O  for x > x ’  in Moses (1975). 

However, we have been unable to find an appropriate Green function thus far for 
the present triangularisation condition. But for the special case that the potential is 
local and there is no delta function contribution at the origin, we have found a Green 
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function from which we can construct a Gelfand-Levitan kernel with the right proper- 
ties. The Green function is 

G k ( x , x ' ) = [ q ( x ' ) ~ ( x  - x ' ) - ~ ( - x ' ) ~ ( x ~ - x ) ] ( s i n  k(x -x'))/k (20) 

where ~ ( x )  is the Heaviside function ~ ( x )  = 0 for x < 0, 77 (x) = 1 for x > 0. We shall 
not go through the calculations which lead to the integral equation for the Gelfand- 
Levitan kernel, but merely state that it parallels the treatment of Abraham et a1 (1982) 
very closely. In addition to obtaining the right triangularity conditions on the kernel, 
and the first of equations (14) for V , ( x )  (without the S function at the origin), it is 
shown that 

( X I K  - x ) =  0. (21) 

It follows from (14) that (21) is a necessary and sufficient condition for the potential 
to be local without a S function at the origin. 

It would be nice to find a condition on (xInlx')=F(x + x ' ) + G ( x  -x')+(xlWdlx') 
to assure us that (21) is valid and that the potential is local. We have not yet been 
able to give a general condition on the spectral function. However, an important 
special case can be considered. 

Let c ( k ) = O .  Moreover choose b ( k )  to have the properties of the reflection 
coefficient of the usual one-dimensional scattering problem (Kay and Moses 1956b). 
Furthermore, let the point eigenvalues E, be negative, 

E , = -  K 1 3  (22) 

q l d x  1 = exp(rc,x). (23) 

and choose 

Finally, choose b ( k ) ,  K , ,  and C, so that 

(x In(0) = 0 for x < 2a  with a > 0. (24) 

(Conditions which lead to equation (24) are discussed in Kay and Moses (1956bl.) 
Then the Gelfand-Levitan equation of the present paper is identical to the equation 
of Kay and Moses (1956b) for the usual one-dimensional inverse problem for potentials 
V,(x)= V(x) such that V(x)=O for x <-a. The quantity b ( k )  is the reflection 
coefficient. Thus the Gelfand-Levitan equation of the present paper leads to local 
potentials under at least some conditions on the spectral measure function. It should 
also be noted that equation (21) holds under the conditions we are discussing at present. 
(Of course a similar statement can be made for x > 2 a  (a  > O )  using the Gelfand- 
Levitan equation for local potentials 'from the other side.') 

4. Examples of parity-dependent potentials 

It is important to provide concrete examples of parity-dependent potentials to make 
sure that the formalism is not empty and to show that such potentials have an interesting 
spectral theory. All our examples are cases in which b ( k )  = c  (k) = 0. The spectral 
measure functions are constructed entirely from point eigenvalue information and the 
potentials are thus analogues of the reflectionless potentials of Kay and Moses (1956~) .  
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4.1. 

Assume a single point eigenvalue E l  = 0. We have two linearly independent choices 
for To1(x).  as the simplest possible case we take 

901(x) = 1. (25) 

Even with this simple choice for the spectral data we obtain interesting results. 
We write C1 = C. 

The Gelfand-Levitan equation is 

We note that (xlKlx') is independent of x'.  Thus we write 

(xIKlx') = F ( x ) .  (27) 

Thus equation (30) becomes 

F ( x )  = -c-l- C-'2lx/F(x).  (28) 

The function F ( x )  is easily solved for and we have 

(x 1Klx') = -(21x I + C)r1, 

V,(x) = - (4 /C)s (X)+4 / (2 )x I+C)* ,  

v2 = 4/(21x1+ Q2. 

The eigenfunction corresponding to the point eigenvalue 0 is 

9 1 ( ~ ) = C / ( 2 / ~ 1 + C j  (32) 

and the eigenfunctions of the continuous spectrum are 

That our solutions satisfy the Schrodinger equation with the potential given above 
and that they satisfy the completeness relation is verified in a straightforward but not 
trivial way. 

Usually the eigenfunctions 9 k ( x )  of the present paper are not the outgoing 
wavefunctions. It will be remembered that the outgoing wavefunctions are defined 
by boundary conditions. One half satisfy 

i k x  + b ( k )  e-ikx, lim U ' r ' ( x ) = e  
x---Oo 

lim 9Eut(x)  = t (k )  elkx for k > 0, 
X + + X  

and the other half satisfy 

-ikx + c ( k )  eikx, lim Y F ' ( x ) = e  

lim 9EUt(x) = s ( k )  e-ikx 

X ' t X  

for k > 0. 
X e - C S  

(34) 

(35) 
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The sum of the sets is a complete set if there are no point eigenvalues. The quantities 
b ( k )  and t ( k )  are the reflection and transmission coefficients from the left and c ( k )  
and s ( k )  are the corresponding quantities from the right. These quantities describe 
the scattering properties of interactions whether or not they are local potentials. 

For the potential of equation (31) we see that q k ( x ) ,  % ( x )  given by equation (33) 
satisfies the outgoing boundary conditions (34) and (35) respectively, but with all the 
transmission and reflection coefficients equal to zero. Thus there are parity-dependent 
potentials which do not scatter, There is no scattering experiment which would reveal 
the existence of these potentials. 

4.2.  

As a second example of a parity-dependent potential which comes from our Gelfand- 
Levitan equation, we again take the case of a single point eigenvalue El = 0 and a 
normalisation Cl = C. But instead of selecting the function q o l ( x )  as given by equation 
(26), we take 

* O l ( X )  = x .  (36) 

( X I K l X ’ )  = F ( x  ) x ‘ .  (37) 

On substituting in the Gelfand-Levitan equation we see that ( x I K l x ’ )  has the form 

On substituting this form back into the Gelfand-Levitan equation, we obtain an 
equation for F ( x )  which is easily solved for, and we find 

( x  I K I x ’ )  = - $ x x ’ / ( / x  13 +sc,. (38) 

Thus 

V , ( x ) =  - v , ( x ) = 3 / x ~ ( / x / 3 - 3 c ) / ( ~ x / 3 + ~ c ) 2 .  (39) 

The eigenfunction corresponding to the point eigenvalue El = 0 is 

* l ( X )  = 3 C X / ( l X  13 + $C) (40) 

and tbose for the continuous spectrum are 

q k ( x )  = eikx - [ 3 i l ~ j ~ / ( 1 ~ 1 ~ + $ ~ ) ] / l ( k x ) .  

In equation (44) j l  is the usual spherical Bessel function of order 1. Again this 
potential does not scatter and the outgoing eigenfunctions are q k ( x ) ,  q z ( x ) .  

In these two examples it is surprisingly difficult to verify our results using direct 
spectral theory methods. Yet from an inverse spectral theory point of view they come 
easily from the Gelfand-Levitan equation. 

4.3. 

As a third example of the unexpected behaviour of parity-dependent potentials, we 
consider the case of a point eigenvalue of multiplicity 2 embedded in the continuous 
spectrum. Accordingly, let El = A *  = e2 with A > 0 be the positive point eigenvalue 
and c1  = C the normalisation for both the eigenfunctions. One may choose any two 
linearly independent solutions of equation (lo),  and for this example we pick 

qOl = eiAx, qo2 = e-iAx (42) 
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and thus 
(x i  w,lx') = ( 2 / ~ )  cos A (X - x ' )  = c -l(eihix-* 1. (43) 

As in the above examples, this kernel is separable, and from the Gelfand-Levitan 
equation it is seen that (x IKlx') has the form 

(44 1 

On substituting into the Gelfand-Levitan equation, one readily obtains Fl and F2. 
The final answer for the Gelfand-Levitan kernel is 

(x/Klx ' )  = Fl(x)eIA" + F 2 ( x )  e-''*. 

(45) 

One can readily obtain the eigenfunctions q k ( x ) ,  q l ( x ) ,  q 2 ( x )  and the potentials 
V,(x) and V2(x). Since the results are rather long expressions involving elementary 
functions but are otherwise quite normal-looking, we shall not write these quantities 
explicitly. This potential does not scatter either. 

2[C c o s h ( x  + x ' )  sinh/.u~-cosA(x - x ' ) ( C + 2 / x l ) ]  
C' cos' Ax + 4/x IC + 4x ' (x IK Ix') = 

4.4. 

As a final example we consider the case where there is one negative point eigenvalue 
E l  = - K  . For VOl (x )  and C1 we take 

q O l ( x )  = eKr,  c1= c. (46) 

2 

The Gelfand-Levitan equation is easily solved for. We find 

(XIKlx')= -e""'"'/(KC +sinh 2KlXI). 

Furthermore, 

(47) 

Also the eigenfunctions of the continuous spectrum are 

q l ( x )  = KC e""/(KC + sinh 2~ 1x 1 ) .  ( 5 0 )  

Unlike the previous examples, this potential scatters. The outgoing eigenfunctions 
are related to q k ( x )  by 

u';"'(x) = T k ( X ) ,  ( 5  1) 
for the outgoing functions satisfying the boundary conditions equation (371, and 

W y ( X )  = [ ( k  +iK)/(k - i K ) ] q ; ( X )  

b ( k )  = c ( k )  = 0 

( 5 2 )  
for those satisfying the boundary condition equation (38). It is readily seen that 

t ( k )  = s(k) = (k +iK)/(k - i K ) .  (53) 
The scattering operator for this parity-dependent potential is identical to that for the 
simplest of the reflectionless potentials of Kay and Moses ( 1 9 5 6 ~ ) .  Hence we have 
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shown that knowledge of the scattering operator and position of the point eigenvalues 
is not sufficient to determine whether a potential is non-local or not. This point is 
discussed more fully in Abraham et a1 (1982). 
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Appendix 1. Derivation for the non-local potential in terms of the Gelfand-Levitan 
kernel 

where F ( x )  and G ( x )  are given by equation (8).  The Gelfand-Levitan equation (12) 
takes the form 

- x  

K ( x , y ) = - R ( x , y ) - s g n x  K ( x , z ) R ( z , y ) d z ,  I-, 
where sgn x is the signum function 

sgn x = 1 if x > O  sgn x = - 1 if x < 0. 

We note that 

dldx(sgn x)  = 26(x),  
and 

Equations (18) and (20) become 
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W e  shall prove 

(d2/dX2+k2)’Pk(X)= v q k ( X ) ,  (A6) 

and the analogous expression for the point spectrum eigenfunctions, where V is the 
non-local potential given by equations ( 1 )  and (14), the latter equation being repeated 
in the new notation as 

V,(x) = 46 (x )K(O, 0) + 2 sgn x dK(x,  x)/dx, 

V2(x) = 2 sgn x dK(x, -x)/dx. (-47) 

Now from the first of equations (A5) 
t X  

d q k ( x ) / d x  = i k  elkx +sgn x [K(x, x )  elkx + K ( x ,  -x) e-IkX]+sgn x [ K,(x, y )  elk’ dy 

d 2 q k ( x ) / d x 2 =  -k2 elkx +46(x)K(O, 0 )  elkx 

d d 
(dx dx 

+sgn x - K(X, x )  * elkr +--K(x, -x)  - e 

+ ik  sgn x [K(x,  x )  elkr -K(x ,  -XI e-lkx] 

+ sgn x [K, (x, x )  elkx + K,  (x, -x) e-lkx] + sgn x 
+ r ;  

K,, (x, y 1 elk\ dy. J-, 
(-49) 

In (A9) and later we use K,(x,  y )  = X(X, y)/ax and K,(x,  y )  = aK(x, y ) / a y ,  and 
similarly for higher-order partial derivatives. Also 

+ X  

k 2 q k ( x ) = k  2 e i k x  + s g n x  K ( x , y ) k 2 e L k ’  dy I, 
d’ 

K (x, y ) 7 elkr dy. 
dY 

C X  

= k 2  elkx - sgn x 

We now integrate by parts twice to obtain 

k 2 P k ( x )  = k 2  elk‘ -ik sgnx  [K(x,  x )  elkx -K(x ,  -x)e-lkx] 
- 1  

f s g n x  [K,(.x,x)e’k* - K , ( x ,  - ~ ) e - ’ ~ ” ]  -sgnx [ K1, (x ,  y)elk’  dy.(A11) 
J - x  

Hence 

In obtaining V in equation (A12) we used K , ( x , x ) + K y ( x , x )  = d K ( x , x ) / d x  and 
Kx(x, - x ) - K , ( x ,  -x) = d K ( x ,  -x)/dx. If we can now show that 

(-413) 

where the non-local operator V acts only with respect to the x variable (i.e. V F ( x ,  y )  = 
V,(x) F ( x ,  y )  + V2(x) F(-x,  y )  for any function (F(x,  y )  of the two variables x and y ) ,  
we shall have verified equation (A6) through the further use of the first of equations 
(A5). 

K,x(x, y)-K,y(x, y )  = VK(X, y )  
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We shall now sketch the proof of (A13), much of which follows the derivation of 
(A12). It will depend upon the uniqueness of the solutions of the Gelfand-Levitan 
equation (12) or equivalently (A12). In the case that the conditions of (7) and (7a) 
are satisfied, it is shown in Kay and Moses (1955, 1956a, b) that the solution is indeed 
unique. 

We shall make use of the following lemma: if the solution of the Gelfand-Levitan 
equation is unique, then the only solution of the homogeneous linear integral equation 

+ x  

M(x, y )  = -sgnx M(x,  z )  R(z ,  y )  dz 

is 

M(x, y )  = 0. (A15) 

Since the proof of the lemma follows the usual lines, we shall omit it. 

Kxx (x, Y 1 = -Rxx (x, y ) - 48 (X )K (0,  O)R (0 ,  Y 1 
From (A2) 
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A solution of (A21) is 

G(x, y 1 = VK(x,  Y 1 ('422) 

(see (A20). 
Equation (A22) is the only solution of (A21), for if there were another solution, 

the homogeneous integral equation (A14) would have a non-trivial solution, which 
from the uniqueness of the solution of the Gelfand-Levitan equation (A2) is impos- 
sible. Thus we have proved equation (A13) and we have verified equation (14) for 
the continuous spectrum eigenfunctions. That the discrete spectrum eigenfunctions 
also satisfy the appropriate Schrodinger equation with the non-local potential is proved 
similarly. 

It should be mentioned that the completeness relations (19) follow closely the 
proofs given in Abraham and Moses (1980) and DeFacio and Moses (1980) for local 
potentials. 
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